## Libraries.Compute.Frustum Documentation

A Frustum is a truncated rectangular pyramid (i.e., a pyramid with the top chopped off) used to define the viewable region and its projection onto the screen.

*Inherits from: *Libraries.Language.Object

## Summary

### Variable Summary Table

Variables | Description |
---|---|

Libraries.Containers.Array planes | |

Libraries.Containers.Array planePoints |

### Actions Summary Table

Actions | Description |
---|---|

Compare(Libraries.Language.Object object) | This action compares two object hash codes and returns an integer. |

Equals(Libraries.Language.Object object) | This action determines if two objects are equal based on their hash code values. |

GetHashCode() | This action gets the hash code for an object. |

PointInFrustum(number x, number y, number z) | This action determines wither the point with the passed x, y, and z coordinates lies in the frustum. |

PointInFrustum(Libraries.Compute.Vector3 point) | This action determines whether the passed point lies in the frustum. |

SphereInFrustum(number x, number y, number z, number radius) | This action determines whether the sphere with its center at the passed x, y, and z coordinates and radius lies in the frustum. |

SphereInFrustum(Libraries.Compute.Vector3 center, number radius) | This action determines whether the sphere with the passed center and radius lies in the frustum. |

SphereInFrustumWithoutNearFar(number x, number y, number z, number radius) | This action determines whether the sphere with the passed center and radius lies within the frustum without checking whether it is behind the near and far clipping plane. |

SphereInFrustumWithoutNearFar(Libraries.Compute.Vector3 center, number radius) | This action determines whether the sphere with the passed center and radius lies within the frustum without checking whether it is behind the near and far clipping plane. |

Update(Libraries.Compute.Matrix4 inverseProjectionView) | This action updates the clipping planes based on the given inverse combined projection and view matrix, like one gotten from an orthographic or perspective camera |

## Actions Documentation

### Compare(Libraries.Language.Object object)

This action compares two object hash codes and returns an integer. The result is larger if this hash code is larger than the object passed as a parameter, smaller, or equal. In this case, -1 means smaller, 0 means equal, and 1 means larger. This action was changed in Quorum 7 to return an integer, instead of a CompareResult object, because the previous implementation was causing efficiency issues.

**Example Code**

```
Object o
Object t
integer result = o:Compare(t) //1 (larger), 0 (equal), or -1 (smaller)
```

#### Parameters

- Libraries.Language.Object: The object to compare to.

#### Return

integer: The Compare result, Smaller, Equal, or Larger.

### Equals(Libraries.Language.Object object)

This action determines if two objects are equal based on their hash code values.

**Example Code**

```
use Libraries.Language.Object
use Libraries.Language.Types.Text
Object o
Text t
boolean result = o:Equals(t)
```

#### Parameters

- Libraries.Language.Object: The to be compared.

#### Return

boolean: True if the hash codes are equal and false if they are not equal.

### GetHashCode()

This action gets the hash code for an object.

**Example Code**

```
Object o
integer hash = o:GetHashCode()
```

#### Return

integer: The integer hash code of the object.

### PointInFrustum(number x, number y, number z)

This action determines wither the point with the passed x, y, and z coordinates lies in the frustum.

#### Parameters

- number x: The x component of the point to test
- number y: The y component of the point to test
- number z: The z component of the point to test

#### Return

boolean: true if the point is in the frustum, false otherwise

### PointInFrustum(Libraries.Compute.Vector3 point)

This action determines whether the passed point lies in the frustum.

#### Parameters

- Libraries.Compute.Vector3: The point to test

#### Return

boolean: true if the point is in the frustum, false otherwise

### SphereInFrustum(number x, number y, number z, number radius)

This action determines whether the sphere with its center at the passed x, y, and z coordinates and radius lies in the frustum.

#### Parameters

- number x: The x coordinate of the center of the sphere
- number y: The y coordinate of the center of the sphere
- number z: The z coordinate of the center of the sphere
- number radius: The radius of the sphere

#### Return

boolean: true if the sphere lies in the frustum, false otherwise

### SphereInFrustum(Libraries.Compute.Vector3 center, number radius)

This action determines whether the sphere with the passed center and radius lies in the frustum.

#### Parameters

- Libraries.Compute.Vector3: The center of the sphere
- number radius: The radius of the sphere

#### Return

boolean: true if the sphere lies in the frustum, false otherwise

### SphereInFrustumWithoutNearFar(number x, number y, number z, number radius)

This action determines whether the sphere with the passed center and radius lies within the frustum without checking whether it is behind the near and far clipping plane.

#### Parameters

- number x: The x coordinate of the center of the sphere
- number y: The y coordinate of the center of the sphere
- number z: The z coordinate of the center of the sphere
- number radius: The radius of the sphere

#### Return

boolean: true if the sphere is in the frustum, false otherwise

### SphereInFrustumWithoutNearFar(Libraries.Compute.Vector3 center, number radius)

#### Parameters

- Libraries.Compute.Vector3: The center of the sphere
- number radius: The radius of the sphere

#### Return

boolean: true if the sphere is in the frustum, false otherwise

### Update(Libraries.Compute.Matrix4 inverseProjectionView)

This action updates the clipping planes based on the given inverse combined projection and view matrix, like one gotten from an orthographic or perspective camera

#### Parameters

- Libraries.Compute.Matrix4: te combined projection and view matrices