Libraries.Compute.Statistics.Distributions.HeavyTailNormalDistribution Documentation
This class, ported from Apache Commons, is an implementation of the T-Distribution. More information can be found here: https://en.wikipedia.org/wiki/Student%27s_t-distribution
Inherits from: Libraries.Language.Object, Libraries.Compute.Statistics.Distributions.NumberDistribution
Actions Documentation
Compare(Libraries.Language.Object object)
This action compares two object hash codes and returns an integer. The result is larger if this hash code is larger than the object passed as a parameter, smaller, or equal. In this case, -1 means smaller, 0 means equal, and 1 means larger. This action was changed in Quorum 7 to return an integer, instead of a CompareResult object, because the previous implementation was causing efficiency issues.
Parameters
- Libraries.Language.Object: The object to compare to.
Return
integer: The Compare result, Smaller, Equal, or Larger.
Example
Object o
Object t
integer result = o:Compare(t) //1 (larger), 0 (equal), or -1 (smaller)
CumulativeDistribution(number x)
* {@inheritDoc}
Parameters
- number x
Return
number:
Density(number x)
* {@inheritDoc}
Parameters
- number x
Return
number:
Equals(Libraries.Language.Object object)
This action determines if two objects are equal based on their hash code values.
Parameters
- Libraries.Language.Object: The to be compared.
Return
boolean: True if the hash codes are equal and false if they are not equal.
Example
use Libraries.Language.Object
use Libraries.Language.Types.Text
Object o
Text t
boolean result = o:Equals(t)
GetDegreesOfFreedom()
discussed in https://issues.apache.org/jira/browse/STATISTICS-25
Return
number:
GetHashCode()
This action gets the hash code for an object.
Return
integer: The integer hash code of the object.
Example
Object o
integer hash = o:GetHashCode()
GetLowerBound()
* * {@inheritDoc} * * For degrees of freedom parameter {@code df}, the variance is *
-
*
- if {@code df > 2} then {@code df / (df - 2)}, *
- if {@code 1 < df <= 2} then positive infinity * ({@code Double.POSITIVE_INFINITY}), *
- else undefined ({@code Double.NaN}). *
Return
number:
GetMean()
@Override
Return
number:
GetNumericalMean()
* * {@inheritDoc} * * For degrees of freedom parameter {@code df}, the mean is *
-
*
- if {@code df > 1} then {@code 0}, *
- else undefined ({@code Double.NaN}). *
Return
number:
GetNumericalVariance()
* * {@inheritDoc} * * For degrees of freedom parameter {@code df}, the variance is *
-
*
- if {@code df > 2} then {@code df / (df - 2)}, *
- if {@code 1 < df <= 2} then positive infinity * ({@code Double.POSITIVE_INFINITY}), *
- else undefined ({@code Double.NaN}). *
Return
number:
GetSolverAbsoluteAccuracy()
@Override
Return
number:
GetSupportLowerBound()
* * {@inheritDoc} * * The lower bound of the support is always negative infinity no matter the * parameters. * * @return lower bound of the support (always * {@code Double.NEGATIVE_INFINITY})
Return
number:
GetSupportUpperBound()
* * {@inheritDoc} * * The upper bound of the support is always positive infinity no matter the * parameters. * * @return upper bound of the support (always * {@code Double.POSITIVE_INFINITY})
Return
number:
GetUpperBound()
* * {@inheritDoc} * * For degrees of freedom parameter {@code df}, the mean is *
-
*
- if {@code df > 1} then {@code 0}, *
- else undefined ({@code Double.NaN}). *
Return
number:
GetVariance()
* * {@inheritDoc} * * The support of this distribution is connected. * * @return {@code true}
Return
number:
InverseCumulativeDistribution(number p)
This action is an implementation of the Inverse Cumulative Distribution, which is also called the Percent Point Function. NIST describes this as NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, date. https://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm
Parameters
- number p
Return
number: the result of the action
InverseSurvival(number p)
This action is an implementation of the inverse survival function, as described by NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, date. This action is equivalent to InverseCumulativeDistribution(1 - p) https://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm
Parameters
- number p
Return
number: the result of the survival function
IsSupportConnected()
* * {@inheritDoc} * * The support of this distribution is connected. * * @return {@code true}
Return
boolean:
IsSupportLowerBoundInclusive()
* {@inheritDoc}
Return
boolean:
IsSupportUpperBoundInclusive()
* {@inheritDoc}
Return
boolean:
LogDensity(number x)
* {@inheritDoc}
Parameters
- number x
Return
number:
Setup(number degreesOfFreedom)
Parameters
- number degreesOfFreedom
Survival(number p)
This action is an implementation of the survival function, as described by NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, date. This action is equivalent to CumulativeDistribution(1 - p) https://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm
Parameters
- number p
Return
number: the result of the survival function
On this page
Variables TableAction Documentation- Compare(Libraries.Language.Object object)
- CumulativeDistribution(number x)
- Density(number x)
- Equals(Libraries.Language.Object object)
- GetDegreesOfFreedom()
- GetHashCode()
- GetLowerBound()
- GetMean()
- GetNumericalMean()
- GetNumericalVariance()
- GetSolverAbsoluteAccuracy()
- GetSupportLowerBound()
- GetSupportUpperBound()
- GetUpperBound()
- GetVariance()
- InverseCumulativeDistribution(number p)
- InverseSurvival(number p)
- IsSupportConnected()
- IsSupportLowerBoundInclusive()
- IsSupportUpperBoundInclusive()
- LogDensity(number x)
- Setup(number degreesOfFreedom)
- Survival(number p)