Libraries.Compute.Statistics.Distributions.Gamma Documentation
This class, ported from Apache Commons, is an implementation of the Gamma Distribution. More information can be found here: https://en.wikipedia.org/wiki/Gamma_distribution
Inherits from: Libraries.Language.Object
Variables Table
Variables | Description |
---|---|
number DEFAULT_EPSILON |
Actions Documentation
Compare(Libraries.Language.Object object)
This action compares two object hash codes and returns an integer. The result is larger if this hash code is larger than the object passed as a parameter, smaller, or equal. In this case, -1 means smaller, 0 means equal, and 1 means larger. This action was changed in Quorum 7 to return an integer, instead of a CompareResult object, because the previous implementation was causing efficiency issues.
Parameters
- Libraries.Language.Object: The object to compare to.
Return
integer: The Compare result, Smaller, Equal, or Larger.
Example
Object o
Object t
integer result = o:Compare(t) //1 (larger), 0 (equal), or -1 (smaller)
Equals(Libraries.Language.Object object)
This action determines if two objects are equal based on their hash code values.
Parameters
- Libraries.Language.Object: The to be compared.
Return
boolean: True if the hash codes are equal and false if they are not equal.
Example
use Libraries.Language.Object
use Libraries.Language.Types.Text
Object o
Text t
boolean result = o:Equals(t)
Gamma(number x)
* The constant {@code C12} defined in {@code DGAM1}.
Parameters
- number x
Return
number:
GetHashCode()
This action gets the hash code for an object.
Return
integer: The integer hash code of the object.
Example
Object o
integer hash = o:GetHashCode()
InvGamma1pm1(number x)
* The constant {@code C11} defined in {@code DGAM1}.
Parameters
- number x
Return
number:
Lanczos(number x)
* From the reflection formula * Gamma(x) * Gamma(1 - x) * sin(pi * x) = pi, * and the recurrence relation * Gamma(1 - x) = -x * Gamma(-x), * it is found * Gamma(x) = -pi / [x * sin(pi * x) * Gamma(-x)].
Parameters
- number x
Return
number:
LogGamma(number x)
Computes the function ln(Gamma(x)). This is adapted from Apache Commons. The implementation is based on:
- Gamma Function, equation (28).
- Lanczos Approximation, equations (1) through (5).
- Paul Godfrey, A note on the computation of the convergent Lanczos complex Gamma approximation
Parameters
- number x: the value.
Return
number: the log gamma function ln(Gamma(x))
LogGamma1p(number x)
* From the recurrence relation * Gamma(x) = (x - 1) * ... * (x - n) * Gamma(x - n), * then * Gamma(t) = 1 / [1 + invGamma1pm1(t - 1)], * where t = x - n. This means that t must satisfy * -0.5 <= t - 1 <= 1.5.
Parameters
- number x
Return
number:
RegularizedGammaP(number a, number x)
Returns the regularized gamma function P(a, x). The action is ported from Apache Commons. This uses the default epsilon (error) and the maximum number of iterations is the largest possible integer.
Parameters
- number a: the a parameter.
- number x: the value.
Return
number: the regularized gamma function P(a, x)
RegularizedGammaP(number a, number x, number epsilon, integer maxIterations)
Returns the regularized gamma function P(a, x). The action is ported from Apache Commons The implementation of this method is based on:
- Regularized Gamma Function, equation (1)
- Incomplete Gamma Function, equation (4).
- Confluent Hypergeometric Function of the First Kind, equation (1).
Parameters
- number a: the a parameter.
- number x: the value.
- number epsilon: When the absolute value of the nth item in the series is less than epsilon the approximation ceases to calculate further elements in the series.
- integer maxIterations: Maximum number of "iterations" to complete.
Return
number: the regularized gamma function P(a, x)
RegularizedGammaQ(number a, number x)
Returns the regularized gamma function Q(a, x) = 1 - P(a, x). This is adapted from Apache Commons.
Parameters
- number a: the a parameter.
- number x: the value.
Return
number: the regularized gamma function P(a, x)
RegularizedGammaQ(number a, number x, number epsilon, integer maxIterations)
Returns the regularized gamma function Q(a, x) = 1 - P(a, x). This is adapted from Apache Commons. The implementation of this method is based on:
- Regularized Gamma Function, equation (1).
- Regularized incomplete gamma function: Continued fraction representations (formula 06.08.10.0003)
Parameters
- number a: the a parameter.
- number x: the value.
- number epsilon: When the absolute value of the nth item in the series is less than epsilon the approximation ceases to calculate further elements in the series.
- integer maxIterations: Maximum number of "iterations" to complete.
Return
number: the regularized gamma function P(a, x)
On this page
Variables TableAction Documentation- Compare(Libraries.Language.Object object)
- Equals(Libraries.Language.Object object)
- Gamma(number x)
- GetHashCode()
- InvGamma1pm1(number x)
- Lanczos(number x)
- LogGamma(number x)
- LogGamma1p(number x)
- RegularizedGammaP(number a, number x)
- RegularizedGammaP(number a, number x, number epsilon, integer maxIterations)
- RegularizedGammaQ(number a, number x)
- RegularizedGammaQ(number a, number x, number epsilon, integer maxIterations)